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Abstract
We introduce the concept of general gauge theory which includes Yang–Mills
models. We use the framework of the causal approach and show that the
anomalies can appear only in the vacuum sector of the identities obtained
from the gauge invariance condition by applying derivatives with respect to the
basic fields. For the Yang–Mills model we provide these identities in the lowest
orders of the perturbation theory and prove that they are valid. The investigation
of higher orders of the perturbation theory is still an open problem.

PACS number: 11.15.−q

1. Introduction

The causal approach to perturbative renormalization theory by Epstein and Glaser [23, 24]
significantly simplifies the conceptual and computational aspects for quantum electrodynamics
[13, 28, 42], Yang–Mills theories [1, 3, 9, 10, 16, 17, 19–21, 25–27, 30, 35, 37, 43, 44], gravity
[32, 33, 47], the analysis of scale invariance [29, 40], Wess–Zumino model [31], etc. In this
approach one uses exclusively the Bogoliubov axioms of renormalization theory [8] imposed
on the scattering matrix: this is an operator acting in the Hilbert space of the model, which is a
Fock space generated from the vacuum by the quantum fields corresponding to the particles of
the model. If one considers the S-matrix as a perturbative expansion in the coupling constant of
the theory, one can translate these axioms on the chronological products. The Epstein–Glaser
approach is an inductive procedure to construct the chronological products in higher orders
starting from the first order of the perturbation theory—the interaction Lagrangian—which
is a Wick polynomial. For gauge theories one can construct a non-trivial interaction only
if one considers a larger Hilbert space generated by the fields associated with the particles
of the model and the ghost fields. In this framework the condition of gauge invariance
becomes the condition of factorization of the S-matrix to the physical Hilbert space in the
adiabatic limit. To avoid infrared problems one works with a formulation of this factorization
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condition which corresponds to a formal adiabatic limit and it is perfectly rigorously defined
[17]. The obstructions to the implementation of the condition of gauge invariance are called
anomalies. The most famous is the Adler–Bell–Bardeen–Jackiw anomaly (see [39] for a
review). The most convenient way to organize the combinatorial argument seems to be the
following one [13, 45]. One constructs the chronological products T (W1(x1), . . . , Wn(xn))

associated with arbitrary Wick monomials W1(x1), . . . ,Wn(xn) according to the Epstein–
Glaser prescription [23] (which reduces the induction procedure to a distribution splitting
of some distributions with causal support) or according to Stora’s prescription [41] (which
reduces the renormalization procedure to the process of extension of distributions).

If T (x) is the interaction Lagrangian (i.e. the first order chronological product) and dQ

the BRST operator, we suppose the validity of some ‘descent’ equations of the type

dQT (x) = i∂µT µ(x) dQT µ(x) = i∂νT
µν(x), . . .

dQT µ1,...,µp−1(x) = i∂µp
T µ1,...,µp (x) dQT µ1,...,µp (x) = 0

(1.0.1)

for some finite p. One denotes by Ak(x), k = 1, 2, . . . , the expressions T (x), T µ(x), T µν, . . .

and we suppose that these expressions have a well defined ghost number, i.e. all terms of
the Wick polynomial Ak(x) have the same ghost degree. Then we can write the preceding
equation in the compact form

dQAk(x) = i
∑
m

ck;µ
m

∂

∂xµ
Am(x) k = 1, 2, . . . (1.0.2)

for some constants c
k;µ
m . The gauge invariance condition has the generic form

dQT (Ak1(x1), . . . , A
kn(xn)) = i

n∑
l=1

(−1)sl

∑
m

ckl ;µ
m

∂

∂x
µ

l

T (Ak1(x1), . . . , A
m(xl), . . . , A

kn(xn))

(1.0.3)

for all n ∈ N and all k1, . . . , kp = 1, 2, . . . . Here the expression

sl ≡
l−1∑
i=1

gh(Aki ). (1.0.4)

One can define [13] the notion of a derivative of a Wick polynomial with respect to
the basic fields of the model. In particular one can apply these derivative operators to the
polynomials Ak(x), k = 1, 2, . . . .

Then we can prove that the gauge invariance condition can be reduced to some identities
verified by the vacuum expectation values of the chronological products of the following type:
〈�, T (DAk1(x1), . . . , DAkn(xn))�〉; here DAk(x), k = 1, 2, . . . , are derivatives of the basic
expressions Ak(x), k = 1, 2, . . . . These are the so-called C-g identities in the language of
[16–19]; it is plausible to expect that they are equivalent to the Ward (Slavnov–Taylor) identities
from the usual formulation of gauge theories, so we prefer to call them Ward identities.

This idea was used in [13] to study the conservation of the electromagnetic current in
quantum electrodynamics. The generalization of this idea to non-Abelian gauge theories is
under investigation [7].

The methods presented in this paper could be a step forward of the proof that the anomalies
are absent in higher orders of the perturbation theory. However, if one writes the Ward identity
corresponding to say, the axial anomaly in an arbitrary order of the perturbation theory, one
immediately sees that if such an anomaly does appear then it cannot be eliminated by some
redefinitions of the vacuum averages of chronological products. To prove that such anomalies
do not appear it seems that one requires the use of some other new ideas. Such an idea
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could be the use of a new normalization condition connected with dilation invariance, that
is the analogue of the Callan–Symanzik identities. This idea was used to prove the absence
of anomalies in higher orders of the perturbation theory assuming the so-called quantum
action principle (formalized also in the algebraic renormalization theory) [4] and was applied
to the standard model in [38]. The key point of this type of analysis is the appearance of
the anomalous dimension. The use of scale invariance in the Epstein–Glaser formalism was
investigated in [29]; if a proper definition of the anomalous dimension could be found, the
elimination of the anomalies in higher orders of the perturbation could also be solved in the
causal formalism.

We start in the next section with a systematic study of the Wick monomials. In particular,
we circumvent the complications associated with the signs coming from the fields with Fermi–
Dirac statistics using Grassmann variables (following a suggestion in [42]). In section 3 we
sketch the framework of the perturbative renormalization theory of Bogoliubov. In section 4
we formulate the notion of general gauge theory and derive the Ward identities. The basic idea
is to consider the modulus R of the (free) quantum fields of the model with respect to the ring
of the partial derivative operators; a general BRST operator is a graded derivative nilpotent
operator dQ : R → R. Because we work only with free fields the nilpotency is ‘on-shell’.
Then one replaces (1.0.3) with a more general structure; we suppose that we have a set of
Wick polynomials Ai (x), i = 1, . . . , p, which we organize as a Wick multiplet (a column
matrix) A and some p × p matrices cα such that the following relation is true:

dQA(x) = i
∑

α

cα∂αA(x). (1.0.5)

Then a definition of gauge invariance for the associated chronological products is possible in
a natural way. The usual gauge models are particular cases of this more general structure. In
section 5 we check the absence of anomalies in lower orders of the perturbation theory for the
Yang–Mills model.

2. The general framework

2.1. Free fields

Here we define the general framework of a free field theory in the Fock space following
closely the point of view of [13]. Some standard notions from quantum relativistic mechanics
are used [23, 48]: the upper (lower) hyperboloids of mass m � 0 are by definition
X±

m ≡ {p ∈ R
4| ‖p‖2 = m2 sign(p0) = ±}; they are Borel sets with respect to the Lorentz

invariant measure dα+
m(p) ≡ dp

2ω(p)
. Here: ‖ · ‖ is the Minkowski norm defined by ‖p‖2 ≡

p · p, and p · q is the Minkowski bilinear form: p · q ≡ p0q0 − p · q. We also denote
V + ≡ {x ∈ R

4| ‖x‖2 � 0} and V − ≡ {x ∈ R
4| ‖x‖2 � 0}. We define a system of free fields to

be the ensemble (φA(x),F,�,Ua,L) where

(i) φA(x),A = 1, . . . , N , are distribution-valued operators acting in the Fock space F with
a common dense domain D0. Here x ∈ M where M is the Minkowski space.

(ii) � ∈ D0 is called the vacuum state. The vectors φA1(x1) · · · φAn(xn)� generate the Fock
space F .

(iii) a, L �→ Ua,L is a unitary representation of the group SL(2, C) acting in F such that

Ua,LφA(x)U−1
a,L = S(L−1)ABφB(δ(L) · x + a) (2.1.1)

here SL(2, C) � L �→ δ(L) ∈ L↑
+ is the covering map and SL(2, C) � L �→ S(L) is

an N × N representation of SL(2, C).
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(iv) supp(φ̃A) ⊂ X+
MA

∪X−
MA

where MA � 0 is called the mass of the field φA,A = 1, . . . , N .
(v) Let us denote by φA

± the positive (negative) frequency components of φA such that

supp
(
φ̃A±

) ⊂ X±
MA

; then there exists a system of numbers zA ∈ Z, A = 1, . . . , N , such
that the following canonical (anti)commutation relations are true:

φA
±(x)φB

±(y) = (−1)zAzB φB
±(y)φA

±(x)

φA
±(x)φB

∓(y) − (−1)zAzB φB
∓(y)φA

±(x) = DAB
± (x − y) × 1F

(2.1.2)

where DAB
± (x) are distributions verifying

DAB
± (x) = 0 iff zA + zB 
= 0 (2.1.3)

and if we define

DAB(x) ≡ DAB
+ (x) + DAB

− (x) (2.1.4)

then these distributions have causal support: supp(DAB(x)) ⊂ V + ∪ V −.
(vi) One has

φA
−(x)� = 0 ∀A = 1, . . . , N. (2.1.5)

(vii) Equations of motion of the type∑
α

uα
A∂αφA(x) = 0 A = 1, . . . , N (2.1.6)

for some constants uα
A are verified; here we use Schwartz multi-indices α, β, . . . but one

can also use the alternative notation u
µν···
A from jet-bundle extension theory. One cannot

avoid the existence of the equations of motion: indeed, because of requirement (iv) the
fields will verify the Klein–Gordon equation:

∂2φA + M2
AφA = 0 A = 1, . . . , N (2.1.7)

i.e. the preceding equation is true for

u
µν

A = M2
AgµνuA (2.1.8)

for arbitrary numbers uA. For Dirac fields one has a first order system of equations of
motion: the Dirac equation.

(viii) For some of the fields a reality condition might be imposed, connecting the Hermitian
conjugates (φA)∗ and the original fields φB .

Let us recall the fact that from (ii) one can derive that if the (graded) commutators of some
operator X with all fields φA are zero, then this operator is proportional to the unit operator 1
from the Fock space.

One can easily see that all known models in Fock spaces can be accommodated in this
scheme.

We avoid the complications due to the signs from (2.1.2) if we consider a Z-graduated
Grassmann algebra G = ∑

n∈Z
Gn over C and some Grassmann numbers gA ∈ G which are

invertible and of parity zA,∀A = 1, . . . , N . Then we consider distributions with values in
G ⊗ L(F) (here L(F) are the linear operators from F) given by

ϕA(x) ≡ gA ⊗ φA(x) ∀A = 1, . . . , N. (2.1.9)

We call these operators the supersymmetric associated fields. We consider J r(RN,M)

the rth order jet bundle extension of the trivial fibre bundle R
N × M → M which describes

classical fields with N components defined over the Minkowski space M ∼ R
4 and we consider
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the jet bundle coordinates uα
A,A = 1, . . . , N, |α| � r . The natural number r should be chosen

large enough. Then we define the following operators:

ϕ±
u (x) ≡

∑
α,A

uα
A∂αϕA

±(x) (2.1.10)

and

ϕu(x) ≡ ϕ+
u(x) + ϕ−

u (x). (2.1.11)

We call the mass-shell the linear subspace:

M ≡ {u ∈ J r(RN,M)|ϕu = 0} (2.1.12)

and denote [u] ≡ u modulo M. We see that in fact the operators ϕu(x) depend only on the
equivalence class [u], i.e. we can consistently use the notation:

ϕ[u](x) ≡ ϕu(x). (2.1.13)

One can easily verify that we have the following form of the canonical commutation
relations:[
ϕ±

u (x), ϕ±
w (y)

]= 0
[
ϕ±

u (x), ϕ∓
w (y)

]= 
±
uw(x − y) [ϕu(x), ϕw(y)] = 
uw(x − y)

(2.1.14)

where on the left-hand side we have the usual commutator and we have defined


±
uw(x − y) ≡

∑
α,A

∑
β,B

gAgBuα
Aw

β

B∂x
α∂

y

βDAB
± (x − y)

(2.1.15)

uw(x − y) ≡ 
+

uw(x − y) + 
−
uw(x − y).

One can easily see that the distribution 
uw(x − y) has causal support and we have the
symmetry property


uw(x − y) = 
wu(y − x). (2.1.16)

It is convenient to choose the Grassmann algebra G such that G0 = C; then we have

±

uw(x − y) ∈ C.
The fact that in (2.1.14) we have the ordinary commutator will make all the following

computations more convenient because we will not worry about the Jordan signs appearing
for fields with Fermi–Dirac statistics.

In the following we will need a derivative operation defined on the classical field jet
bundle: if α is multi-index, then we define ∂α : J r(RN,M) → J r(RN,M) according to

(∂αu)
β

A ≡
∑

α+β=γ

u
γ

A. (2.1.17)

Then we have three elementary facts.

Proposition 2.1. (i) If u ∈ M then ∂αu ∈ M for any multi-index α.

Proof. One applies the partial derivative operator ∂α to the equations of motion (2.1.6). �

Proposition 2.2. The following relations are true:

∂αϕu(x) = ϕ∂αu(x) (2.1.18)

∂α
uw = 
∂αu,w. (2.1.19)
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Proof. The first relation is a result of an elementary computation. For the second relation, we
apply the partial derivative operator ∂α to the last canonical commutation relation (2.1.14) and
use the first relation. �

We also note that there is a natural group action l, u �→ l · u of the group SL(2, C) on the
elements of J r(RN,M). The Hermitian conjugation operation postulated in item (viii) of the
preceding subsection induces a natural conjugation operation u �→ u∗ on the classical fields
from J r(RN,M). We will need these operations later.

We end this subsection by pointing out the fact that in the literature one usually uses
Grassmann valued classical fields instead of the classical fields from J r(RN,M). The
connection is J r(RN,M) � uα

A → gAuα
A ∈ J r(G ⊗ R

N,M).
The classical structure J r(RN,M) associated with the Wick monomial algebra was used

somewhat differently in [5] and [13].

2.2. Supersymmetric Wick monomials

A complete and rigorous investigation of the Wick combinatorial arguments can be found in
[15]. Here we give an approach which does not use Feynman graphs. We use consistently
Bourbaki conventions

∑
∅ ≡ 0,

∏
∅ ≡ 1. We will define Wick monomials through the

following proposition.

Proposition 2.3. The operator-valued distributions N
(
ϕu1(x1), . . . , ϕun

(xn)
)

are uniquely
determined through the following properties:

N
(
ϕu1(x1), . . . , ϕun

(xn)
)
� = ϕ+

u1
(x1), . . . , ϕ

+
un

(xn)� (2.2.1)[
N
(
ϕu1(x1), . . . , ϕun

(xn)
)
, ϕw(y)

] =
n∑

l=1

N
(
ϕu1(x1), . . . , ϕ̂ul

, . . . , ϕun
(xn)

)

ulw(xl − y)

(2.2.2)

N(∅) ≡ 1. (2.2.3)

In the first two relations n is arbitrary.

Proof. It is elementary. For n = 1 we find from the second property that N(ϕu(x)) − ϕu(x)

commutes with every operator ϕw(y), so it must be of the form const × 1. But the first
relation fixes this constant as 0. Next, we suppose that we have defined the expressions
N
(
ϕu1(x1), . . . , ϕun−1(xn−1)

)
and we use the second and the first relations to define the action

of N
(
ϕu1(x1), . . . , ϕun

(xn)
)

on vectors of the type ϕw1(y1), . . . , ϕwk
(yk)�; from (ii) of the

previous subsection we know that they generate the whole Fock space. �

We call the operators N
(
ϕu1(x1), . . . , ϕun

(xn)
)

supersymmetric Wick (or normal)
monomials in n variables.

Let us note that, in fact, the Wick monomial N
(
ϕu1(x1), . . . , ϕun

(xn)
)

depends only on the
equivalence classes [u1], . . . , [un]. Using induction, one can easily prove that it is completely
symmetric in the arguments.

We can easily establish the connection with the usual definition of the Wick monomials.

Proposition 2.4. The following relation is true:

N
(
ϕu1(x1), . . . , ϕun

(xn)
) =

∑
I,J∈part{1,...,n}

∏
i∈I

ϕ+
ui

(xi)
∏
j∈J

ϕ−
uj

(xj ). (2.2.4)
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Proof. We first note that the order of the factors in the two products is irrelevant because of
the commutativity property (2.1.14). The proof consists in denoting the right-hand side of
the relation by N ′(ϕu1(x1), . . . , ϕun

(xn)
)

and proving that the three relations appearing in the
preceding proposition are true. Then we use the uniqueness assertion. �

As a immediate corollary we obtain the following.

Corollary 2.5. The following relations are true:

N
(
ϕu1(x1), . . . , ϕun

(xn), ϕw(y)
) = N

(
ϕu1(x1), . . . , ϕun

(xn)
)
ϕw(y)

−
n∑

l=1

〈
�,ϕul

(xl)ϕw(y)�
〉
N
(
ϕu1(x1), . . . , ϕ̂ul

, . . . , ϕun
(xn)

)
(2.2.5)

N
(
ϕu1(x1), . . . , ϕun

(xn), ϕw(y)
) = ϕw(y)N

(
ϕu1(x1), . . . , ϕun

(xn)
)

+
n∑

l=1


+
ulw

(xl − y)N
(
ϕu1(x1), . . . , ϕ̂ul

, . . . , ϕun
(xn)

)
. (2.2.6)

Proof. The first relation follows immediately from the preceding proposition. If we combine
it with the second property from proposition 2.3 then we obtain the second relation. �

If we apply the preceding results we can also obtain using induction the following
corollary.

Corollary 2.6. The normal products can be expressed as

N
(
ϕu1(x1), . . . , ϕun

(xn)
) =

∑
k

∑
i1<···<ik

d+(x1, . . . , xn)ϕui1
(xi1), . . . , ϕuik

(xik ) (2.2.7)

where d+(x1, . . . , xn) are distributions.

In fact, one can express the distributions from the statement as a sum of distributions d+
G

labelled by Feynman graphs [15]. However, we do not need this result here.
Now, a non-trivial observation is that if we formally ‘collapse’ all arguments x1, . . . , xn �→

x in the expression N
(
ϕu1(x1), . . . , ϕun

(xn)
)

we obtain well-defined operators.

Proposition 2.7. The expressions

Wu1,...,un
(x) ≡ N

(
ϕu1(x), . . . , ϕun

(x)
)

(2.2.8)

are well defined and they are completely symmetric in the indices u1, . . . , un.

Proof. We collapse the arguments in the relations of the preceding proposition and formally
obtain

Wu1,...,un
(x)� = ϕ+

u1
(x), . . . , ϕ+

un
(x)� (2.2.9)[

Wu1,...,un
(x), ϕw(y)

] =
n∑

l=1

Wu1,...,ûl ,...,un
(x)
ulw(xl − y) (2.2.10)

W∅ ≡ 1. (2.2.11)
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The only non-trivial step is to prove that the right-hand side of the first relation is well
defined; this is done in [49]. The rest of the proof is identical. �

If U ≡ {u1, . . . , un} then we can use consistently the notation WU(x). We call expressions
of this type supersymmetric Wick monomials of rank n in one variable. Again we note that
the dependence on the classical fields u1, . . . , un is only through the equivalence classes. The
action l, u �→ l ·u of the group SL(2, C) on the jet bundle coordinates extends naturally to the
action l, U �→ l ·U componentwise. The same assertion is valid for the Hermitian conjugation
u �→ u∗ which extends componentwise to U �→ U ∗. We now give an elementary result.

Proposition 2.8. The following formula is true:

∂αWu1,...,un
(x) =

n∑
l=1

Wu1,...,∂αul ,...,un
(x). (2.2.12)

Proof. It follows by induction commuting both sides with an arbitrary field ϕw(y). �

By definition, a (supersymmetric) Wick polynomial is any linear combination (with
coefficients from G) of Wick monomials. The set of all (supersymmetric) Wick polynomials
in the Fock space F is denoted by sWick(F). The action of SL(2, C) and the Hermitian
conjugation extend naturally to the set of (supersymmetric) Wick polynomials. When no
ambiguity is possible we abandon the attribute supersymmetric.

A generalization of the collapsing procedure used above is available and essential to the
perturbation theory. Namely, we consider the expression N

(
ϕu1(x1), . . . , ϕuk

(xk)
)

for k > n

and group the variables x1, . . . , xk in n subsets; then we collapse the arguments to distinct
points inside every subset.

Proposition 2.9. The expression

N
(
WU1(x1), . . . , WUn

(xn)
) ≡ N

∏
u∈U1

ϕu(x1), . . . ,
∏
u∈Un

ϕu(xn)

 (2.2.13)

is well defined and completely symmetric in the arguments.

Proof. As before, we obtain from the first proposition the following relations:

N
(
WU1(x1), . . . ,WUn

(xn)
)
� =

n∏
i=1

∏
u∈Ui

ϕ+
u(xi)� (2.2.14)

[
N
(
WU1(x1), . . . , WUn

(xn)
)
, ϕw(y)

]
=

n∑
l=1

∑
u∈Ul

N
(
WU1(x1), . . . ,WUl−{u}, . . . ,WUn

(xn)
)

uw(xl − y) (2.2.15)

N(W(x)) ≡ W(x) (2.2.16)

and we can use recursion. �

We have results similar to corollary 2.5.
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Corollary 2.10. The following relations are true:

N
(
WU1(x1), . . . ,WUk

(xk), ϕw(y)
) = N

(
WU1(x1), . . . , WUk

(xk)
)
ϕw(y)

−
k∑

l=1

∑
u∈Ul

〈�,ϕu(xl)ϕw(y)�〉N(
WU1(x1), . . . ,WUl−{u}, . . . ,WUk

(xk)
)
(2.2.17)

N
(
WU1(x1), . . . ,WUk

(xk), ϕw(y)
) = ϕw(y)N

(
WU1(x1), . . . ,WUk

(xk)
)

+
k∑

l=1

∑
u∈Ul


+
uw(xl − y)N

(
WU1(x1), . . . ,WUl−{u}, . . . ,WUk

(xk)
)

(2.2.18)

〈
�,N

(
WU1(x1), . . . ,WUk

(xk)
)
N
(
WUk+1(xk+1), . . . ,WUn

(xn), ϕw(y)
)
�
〉

=
k∑

l=1

∑
u∈Ul

〈�,ϕu(xl)ϕw(y)�〉〈�,N
(
WU1(x1), . . . ,WUl−{u}(xl), . . . ,WUk

(xk)
)

×N
(
WUk+1(xk+1), . . . ,WUn

(xn)
)
�
〉
. (2.2.19)

Proof. We take in corollary 2.5 {u1, . . . , un} = ∪k
i=1Ui and we ‘collapse’ the variables xj

pertaining to the same set Ui . In this way the first two relations follow. The last relation
follows from the first one. �

Relation (2.2.15) from the proof of proposition 2.2 is remarkable and deserves a special
name. We call an ensemble of operator-valued distributions E

(
WU1(x1), . . . ,WUn

(xn)
)

of
(supersymmetric) Wick type if and only if the following two conditions are verified:

E(∅, . . . ,∅) = const,
(2.2.20)

E(∅, . . . , ϕu(xl), . . . ,∅) = 〈�,E(∅, . . . , ϕu(xl), . . . ,∅)�〉1 + E(∅, . . . ,∅)ϕu(xl)[
E
(
WU1(x1), . . . ,WUn

(xn)
)
, ϕw(y)

]
=

n∑
l=1

∑
u∈Ul

E
(
WU1(x1), . . . , WUl−{u}, . . . ,WUn

(xn)
)

uw(xl − y). (2.2.21)

It is easy to note that if E
(
WU1(x1), . . . , WUn

(xn)
)

and F
(
WUn+1(xn+1), . . . ,WUn+m

(xn+m)
)

are expressions of Wick type, then E
(
WU1(x1), . . . ,WUn

(xn)
)
F
(
WUn+1(xn+1), . . . ,

WUn+m
(xn+m)

)
is also an expression of Wick type. The assertion remains true for more than

two factors.
We can extend, by linearity, an expression of Wick type to Wick polynomials: if Wj(xj )

are Wick monomials, and ci1j1 , cinjn
∈ G then we define

E
(∑

ci1j1Wj1(x1), . . . ,
∑

cinjn
Wjn

(xn)
)

≡
∑

ci1j1 · · · cinjn
E
(
Wj1(x1), . . . , Wjn

(xn)
)

(2.2.22)

where the convention about the order of factors is important because of the non-commutativity
of the elements of the Grassmann algebra.

The well-known 0-theorem of Epstein–Glaser asserts that expressions of the type

E(W1(x1), . . . ,Wn(xn)) ≡ d(x1, . . . , xn)N(W1(x1), . . . ,Wn(xn)) (2.2.23)



2812 D R Grigore

where d(x1, . . . , xn) is a translation-invariant distribution, are well defined. They are obviously
expressions of Wick type. If we take the distribution d of the form

d(x1, . . . , xn) = p(∂)δn−1(X) (2.2.24)

where p(∂) is a polynomial in the partial derivatives and

δn−1(X) ≡ δ(x1 − xn) · · · δ(xn−1 − xn) (2.2.25)

then we obtain some special expressions of Wick type called quasi-local operators [8]. Such
a type of operator has a distinguished role in the perturbative renormalization theory.

This analysis culminates with an extremely neat form of Wick theorem.

Theorem 2.11. Let E
(
WU1(x1), . . . ,WUn

(xn)
)

be an expression of Wick type. Then the
following relation is valid:

E
(
WU1(x1), . . . ,WUn

(xn)
)

=
∑

U ′
i ⊂Ui

〈
�,E

(
WCU ′

1
(x1), . . . , WCU ′

n
(xn)

)
�
〉
N
(
WU ′

1
(x1), . . . ,WU ′

n
(xn)

)
(2.2.26)

where CU ′
i ≡ Ui − U ′

i are the set-theoretically complements.

Proof. It is shown by induction over the rank r ≡ |U1| + · · · + |Un|. For r = 1 the formula
from the statement is trivial. We suppose that the formula is true for |U1| + · · · + |Un| = r − 1
and prove it for |U1| + · · · + |Un| = r. One commutes both sides of the identity to be proved
with an arbitrary ϕw(y) and, using the induction hypothesis, obtains equality. It follows that
the relation to be proved is valid up to a constant operator. If we average on the vacuum we
obtain that the constant is, in fact, zero. �

We end this subsection by remarking that the set sWick(F) of all Wick polynomials has
a natural Hopf algebra structure:

• the multiplication m : sWick(F) ⊗ sWick(F) → sWick(F) is

m
(
WU1 ,WU2

) ≡ WU1∪U2 (2.2.27)

• the co-multiplication 
 : sWick(F) → sWick(F) ⊗ sWick(F) is


(WU) ≡
∑

U1,U2∈part(U)

WU1 ⊗ WU2 (2.2.28)

• the co-unit ε : sWick(F) → C is

ε(WU) =
{

1 U = ∅
0 U 
= ∅ (2.2.29)

• the antipode operator S : sWick(F) → sWick(F) is

S(WU) ≡ (−1)|U |WU. (2.2.30)

Then sWick(F) is a Hopf algebra commutative and co-commutative. This algebra is
isomorphic to a Hopf algebra of the type S(V ) with V = J r(M, R

n); the isomorphism is

S(V ) � u1 ∨ · · · ∨ un �→ Wu1,...,un
∈ sWick(F). (2.2.31)

For other details see [6].
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2.3. Derivatives of Wick polynomials

We can give alternative expressions for this theorem if we introduce the notion of a derivative of
a Wick monomial [13]. We give here a more compact treatment. Let us denote the coordinates
on the dual of the classical field bundle (J r(RN,M))∗ by vA

α ; the duality form is

〈v, u〉 ≡
∑
A,α

vA
α uα

A. (2.3.1)

We consider the polar of the mass-shell:

M0 ≡ {v ∈ (J r(RN,M))∗|〈v, u〉 = 0, ∀u ∈ M}. (2.3.2)

Then we have the following elementary result.

Proposition 2.12. Let v ∈ M0; the operator ρ(v) : sWick(F) → sWick(F) is well defined
by

ρ(v)WU(x) ≡
∑
u∈U

〈v, u〉WU−{u}(x) (2.3.3)

and linearity. Moreover, these operators commute among themselves:

[ρ(v1), ρ(v2)] = 0 ∀v1, v2 ∈ M0. (2.3.4)

We call ρ(v) derivative operators of Wick polynomials. Because of the commutativity it
makes sense to define for any set V = {v1, . . . , vn} of elements from M0 derivative operators
of higher order through

ρ(V ) ≡
n∏

i=1

ρ(vi). (2.3.5)

We can provide an alternative expression for the normal products and Wick monomials.

Proposition 2.13. Let us consider {vj }j∈J a basis in M0 and {v∗
j }j∈J a dual basis in a

supplement M′ of M ⊂ J r(RN,M) such that the completeness relation is valid:∑
j∈J

(v∗
j )

α
A(vj )

B
β = δα

βδB
A. (2.3.6)

Then the following formulae are valid:

N
(
ϕu1(x1), . . . , ϕun

(xn)
) =

∑
j1,...,jn∈J

n∏
k=1

〈
vjk

, uk

〉
N
(
ϕv∗

j1
(x1), . . . , ϕv∗

jn
(xn)

)
(2.3.7)

Wu1,...,un
(x) =

∑
j1,...,jn∈J

n∏
k=1

〈
vjk

, uk

〉
Wv∗

j1
,...,v∗

jn
(x). (2.3.8)

Proof. We use a technique familiar by now. Let us denote the right-hand side of the first
relation by N ′(ϕu1(x1), . . . , ϕun

(xn)
)

and check that the properties in proposition 2.3 are true.
One must use the relation∑

j∈J

〈vj , u〉
v∗
j w(x − y) = 
uw(x − y) (2.3.9)

which is a consequence of the completeness relation. The second relation from the statement
follows if we ‘collapse’ the arguments into the first one. �
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Now we can give two alternative formulations of the Wick theorem. First we have the
following theorem.

Theorem 2.14. Every Wick expression E(W1(x1), . . . ,Wn(xn)) (here W1(x1), . . . ,Wn(xn)

are Wick polynomials) verifies the following relation:

[E(W1(x1), . . . ,Wn(xn)), ϕw(y)]

=
n∑

l=1

∑
j∈J


v∗
j w(xl − y)E(W1(x1), . . . , ρ(vj )Wl(xl), . . . , Wn(xn)). (2.3.10)

In particular we have for every Wick polynomial:

[W(x), ϕw(y)] =
∑
j∈J


v∗
j w(x − y)ρ(vj )W(x). (2.3.11)

Proof. It is sufficient to consider that W1(x1), . . . ,Wn(xn) are Wick monomials. Then we use
the defining relation for an expression of Wick type and relation (2.3.9). �

Now we can give another compact form of Wick theorem.

Theorem 2.15. The following formula is valid:

E(W1(x1), . . . ,Wn(xn))

=
∑
Vi

〈�,E(ρ(V1)W1(x1), . . . , ρ(Vn)Wn(xn))�〉N(
WV ∗

1
(x1), . . . , WV ∗

n
(xn)

)
(2.3.12)

where the sum runs over all sets Vi of elements of the type vj (j ∈ J ) from M0.

Proof. As before, it is sufficient to consider that the expressions Wi are Wick monomials. If
we use proposition 2.13 we obtain that the right-hand side of the relation from the statement
coincides with the right-hand side of the relation from the Wick theorem (2.2.26). �

We can extend the operation of derivation ∂α to elements of the polar M0 through duality:
we have

Proposition 2.16. Let us define ∂α : (J r(RN,M))∗ → (J r−|α|(RN,M))∗ according to

(∂αv)Aβ ≡ vA
α+β. (2.3.13)

Then

(i) If v ∈ M0 we also have ∂αv ∈ M0 for any multi-index α.
(ii) The following commutation relation is valid:

[ρ(v), ∂α] = ρ(∂αv). (2.3.14)

Proof. The first assertion follows from the corresponding property for the derivatives of the
elements of J r(RN,M) and the duality relation:

〈∂αv, u〉 = 〈v, ∂αu〉. (2.3.15)

This identity, as well as the last relation from the statement, can be proved directly from the
definitions by elementary computations. �
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It is convenient to introduce some particular derivatives of the type ρ(v). We consider
some field ϕA (the index A is fixed) constrained only by the Klein–Gordon equation (2.1.7).
Then we define the elements vA, v

µ

A ∈ M0, by giving only the non-zero entries:

(vA)B = δB
A (vA)Bνρ = − 1

4M2
AδB

Agνρ (2.3.16)

and respectively(
v

µ

A

)B
ν

= δB
Aδµ

ν

(
v

µ

A

)B
νρσ

= − 1
4M2

AδB
ASνρσ δµ

ν gρσ . (2.3.17)

Indeed we immediately have

〈vA, u〉 = 0
〈
v

µ

A, u
〉 = 0 ∀u ∈ M.

Then we denote
∂

∂ϕA
≡ ρ(vA)

∂

∂ϕA
µ

≡ ρ
(
v

µ

A

)
. (2.3.18)

These are in fact derivatives with respect to the basic fields and their first order jet extension.
Next we have the following result [13] following directly from the second formula of

theorem 2.14. We say that WU is a Wick monomial of first order if all elements u ∈ U verify
uα

A = 0,∀|α| > 1. A first order Wick polynomial is a sum of first order Wick monomials.

Proposition 2.17. Suppose that W is a Wick polynomial of first order. Then we have

[W(x), ϕA(y)] = ∂

∂ϕB
W(x)
AB(x − y) +

∂

∂ϕB
µ

W(x)∂µ
AB(x − y). (2.3.19)

The proof is elementary. We also define

∂σ · ∂

∂ϕA
≡ ρ(∂σ · vA) ∂σ · ∂

∂ϕA
µ

≡ ρ
(
∂σ · v

µ

A

)
. (2.3.20)

Then, for any first order Wick polynomial W we have the following formulae:

∂σ · ∂

∂ϕA
W(x) = −1

4
M2

A

∂

∂ϕA
σ

W(x) ∂σ · ∂

∂ϕA
µ

W(x) = δµ
σ

∂

∂ϕA
W(x). (2.3.21)

We finally note that we can define in a natural way the ghost number of the derivatives
∂

∂ϕA , ∂
∂ϕA

µ
to be zA. If the elements of the set V = {v1, . . . , vk} are of defined ghost number,

then

gh(V ) ≡
∑

gh(vi). (2.3.22)

2.4. Wick monomials

In this subsection, we make the connection with the ordinary Wick monomials defined in the
original Fock space F . Loosely speaking, if we strip a supersymmetric Wick monomial of its
Grassmann factors in a consistent way, we obtain the usual Wick monomials. First we have
the following proposition.

Proposition 2.18. Let σ be the section of the fibre bundle: J r(RN,M) → J r(RN,M)/M.
Then every Wick monomial can be uniquely written in the form

Wu1,...,un
(x) =

n∏
i=1

(ũi)
αi

Ai
WA1,...,An

α1,...,αn
(x) =

n∏
i=1

(ũi)
αi

Ai
gAi

WA1,...,An

α1,...,αn
(x) (2.4.1)
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where ũi ≡ σ([ui]),WA1,...,An
α1,...,αn

(x) are operator-valued distributions with values in G ⊗ L(F)

and WA1,...,An
α1,...,αn

(x) are operator-valued distributions with values in L(F). A similar relation
can be established for supersymmetric expressions of Wick type.

Proof. We define recurrently the expressions WA1,...,An
α1,...,αn

(x) through the following properties:

WA1,...,An

α1,...,αn
(x)� =

n∏
i=1

∂αi
ϕAi (x)� (2.4.2)

[
WA1,...,An

α1,...,αn
(x), ∂βϕB(x)

] =
n∑

l=1

W
A1,...,Âl ,...,An

α1,...,α̂l ,...,αn
(x)∂x

αl
∂

y

β
AlB(x − y) (2.4.3)

W ∅
∅ (x) = 1. (2.4.4)

One can prove that these relations define uniquely the expressions WA1,...,An
α1,...,αn

(x) using a
familiar argument. Then we obtain the first equality from the statement using the uniqueness
argument from proposition 2.7.

The expressions WA1,...,An
α1,...,αn

(x) can be defined quite similarly and we obtain the second
equality from the statement. �

One can see that the expressions WA1,...,An
α1,...,αn

(x) are in fact supersymmetric Wick monomials:
they can be obtained for some special choice of the classical fields ui . Moreover, they are
completely symmetric in the couples (A, α) and are not linearly independent. In fact, we have
‘equation of motion’ of the type∑

αl

u
αl

Al
WA1,...,An

α1,...,αn
(x) = 0 ∀u ∈ M. (2.4.5)

A similar assertion is valid for WA1,...,An
α1,...,αn

(x); more precisely, we have skew-symmetry in
the couples (A, α) and appropriate equations of motion. The expressions WA1,...,An

α1,...,αn
(x) are

called Wick monomials and Wu1,...,un
(x) is the associated supersymmetric Wick monomial. A

Wick polynomial is an operator acting in F of the following form:

L(x) =
∑

Cα1,...,αn

A1,...,An
WA1,...,An

α1,...,αn
(x) (2.4.6)

where Cα1,...,αn

A1,...,An
are complex constants with convenient (anti)-symmetry properties. We denote

by Wick(F) the set of Wick polynomials in F . If we express the operators WA1,...,An
α1,...,αn

(x)

in terms of WA1,...,An
α1,...,αn

(x), then we canonically associate with the Wick polynomial L(x) a
supersymmetric Wick polynomial L(x) acting in G ⊗ L(F).

We can now define some derivative operators. First, we note that the derivation ρ(v)

induces a derivation, also denoted by ρ(v) on the space of Wick polynomials. Next, we have
the following result:

Proposition 2.19. Let us define the operators: ∂
β

B : sWick → sWick according to

∂
β

BWA1,...,An

α1,...,αn
(x) ≡

n∑
l=1

δ
Al

B δβ
αl
W

A1,...,Âl ,...,An

α1,...,α̂l ,...,αn
(x). (2.4.7)

Then the following relations are true:

∂
β

BWU(x) =
∑
u∈U

ũ
β

BWU−{u}(x) ρ(v) =
∑
A,α

vA
α ∂α

A ∀v ∈ M0. (2.4.8)
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3. Perturbation theory in the causal approach

We give here the essential ingredients of the perturbation theory using the supersymmetric
formalism described in the preceding section.

3.1. Bogoliubov axioms

We use, essentially, the point of view of of Stora and Fredenhagen [5, 13, 45] using the
chronological product. An equivalent point of view uses retarded products [46]. By
perturbation theory in the sense of Bogoliubov, we mean an ensemble of operator-valued
distributions T (W1(x1), . . . , Wn(xn)) ∈ G ⊗ L(F), n = 1, 2, . . . called (supersymmetric)
chronological products (here W1(x1), . . . ,Wn(xn) are supersymmetric Wick polynomials)
verifying the following set of axioms.

• Symmetry in all arguments W1(x1), . . . ,Wn(xn).

• Poincaré invariance: for all (a, L) ∈ inSL(2, C), we have

Ua,LT (W1(x1), . . . ,Wn(xn))U
−1
a,L

= T (L · W1(δ(L) · x1 + a), . . . , L · Wn(δ(L) · xn + a)). (3.1.1)

Sometimes it is possible to supplement this axiom by corresponding invariance properties
with respect to inversions (spatial and temporal) and charge conjugation. For the standard
model only the PCT invariance is available. Also, some other global symmetry with
respect to some internal symmetry group might be imposed.

• Causality: if xi � xj ,∀i � k, j � k + 1, we then have

T (W1(x1), . . . ,Wn(xn)) = T (W1(x1), . . . , Wk(xk))T (Wk+1(xk+1), . . . ,Wn(xn)). (3.1.2)

• Unitarity: we define the (supersymmetric) anti-chronological products according to

(−1)nT̄ (W1(x1), . . . ,Wn(xn)) ≡
n∑

r=1

(−1)r
∑

I1,...,Ir∈ part({1,...,n})
TI1(X1) · · · TIr

(Xr) (3.1.3)

where we have used the notation

T{i1,...,ik}
(
xi1 , . . . , xik

) ≡ T
(
Wi1

(
xi1

)
, . . . ,Wik

(
xik

))
. (3.1.4)

Then the unitarity axiom is

T̄ (W1(x1), . . . ,Wn(xn)) = T (W ∗
1 (x1), . . . ,W

∗
n (xn)). (3.1.5)

• The ‘initial condition’

T (W(x)) = W(x). (3.1.6)

Remark 3.1. From (3.1.2) one can derive easily that if we have xi ∼ xj ,∀i � k, j � k + 1
then

[T (W1(x1), . . . ,Wk(xk)), T (Wk+1(xk+1), . . . , Wn(xn))] = 0. (3.1.7)

3.2. Epstein–Glaser construction

Epstein–Glaser construction provides an explicit solution for Bogoliubov axioms. We sketch
briefly the proof.

Theorem 3.2. There exists a solution of Bogoliubov axioms.
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Proof. Goes by induction. One supposes that the chronological products are constructed up
to the order n − 1 such that all Bogoliubov axioms are verified. We supplement the induction
hypothesis with the requirement that the chronological products (up to the order n − 1) are
expressions of Wick type; this means that we have for all p = 1, . . . , n − 1:[
T
(
WU1(x1), . . . ,WUp

(xp)
)
, ϕw(y)

]
=

p∑
l=1

∑
u∈Ul

T
(
WU1(x1), . . . ,WUl−{u}, . . . , WUp

(xp)
)

uw(xl − y) (3.2.1)

so, according to the Wick theorem 2.11, we have the expansion

T
(
WU1(x1), . . . ,WUp

(xp)
) =

∑
U ′

i ⊂Ui

〈
�, T

(
WCU ′

1
(x1), . . . , WCU ′

p
(xp)

)
�
〉

×N
(
WU ′

1
(x1), . . . ,WU ′

p
(xp)

)
. (3.2.2)

We can also include in the induction hypothesis a limitation on the order of singularity of
the vacuum averages of the chronological products associated with arbitrary Wick monomials
W1, . . . , Wp; explicitly

ω(〈�, T (W1(x1), . . . ,Wp(xp))�〉) �
p∑

l=1

ω(Wl) − 4(p − 1) p = 1, . . . , n − 1

(3.2.3)

where by ω(d) we mean the order of singularity of the (numerical) distribution d and by
ω(W) we mean the canonical dimension of the Wick monomial W . It is easy to check that
the induction hypothesis is true for n = 1.

The construction of Epstein–Glaser is based on the commutator D
(
WU1(x1), . . . ,

WUn
(xn)

)
with causal support. The explicit expression of this commutator is known in

terms of the chronological products up to the order n − 1:

D(W1(x1), . . . ,Wn(xn)) ≡
∑′

(−1)|Y |[TI (X), T̄J (Y )] (3.2.4)

where the sum
∑′ goes over the partitions I ∪ J = {1, . . . , n}, I ∩ J = ∅, J 
= ∅, xn ∈ I .

Moreover, from the explicit formula of the causal commutator it is clear that this expression
is also of Wick type (it is a sum of products of expressions of Wick type—according to the
induction hypothesis). So, the Wick theorem can be applied and gives an expression of the
type

D
(
WU1(x1), . . . ,WUn

(xn)
) =

∑
U ′

i ⊂Ui

〈
�,D

(
WCU ′

1
(x1), . . . ,WCU ′

n
(xn)

)
�
〉

×N
(
WU ′

1
(x1), . . . ,WU ′

n
(xn)

)
. (3.2.5)

One can show that the order of singularity of the numerical distributions

d(x1, . . . , xn) ≡ 〈
�,D

(
WU1(x1), . . . ,WUn

(xn)
)
�
〉

(3.2.6)

verifies a restriction of the type (3.2.3); this is the content of the so-called power-counting
theorem. Next, one can provide in a standard way a causal splitting of the distribution
d(x1, . . . , xn) such that the Poincaré covariance and the order of singularity are preserved.
This induces a causal splitting for the operator-valued distribution

D
(
WU1(x1), . . . ,WUn

(xn)
) = A

(
WU1(x1), . . . ,WUn

(xn)
) − R

(
WU1(x1), . . . , WUn

(xn)
)
(3.2.7)
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which can be used to construct the n-order chronological product T
(
WU1(x1), . . . ,WUn

(xn)
)
.

The unitarity can also be fixed quite easily [23]. The induction is finished. �

From the construction it follows that one can define the chronological products such that
we have (3.2.1) and (3.2.3) for all p = 1, 2, . . . . The first relation is the normalization condition
(N3) of [5, 13]. According to the previous section, we also have alternative formulations for
the first two of them, namely, we have for all n ∈ N:

[T (W1(x1), . . . ,Wn(xn)), ϕw(y)]

=
n∑

l=1

∑
j∈J


v∗
j w(xl − y)T (W1(x1), . . . , ρ(vj )Wl(xl), . . . , Wn(xn)) (3.2.8)

and

T (W1(x1), . . . ,Wn(xn)) =
∑

Vi⊂M0

〈�, T (ρ(V1)W1(x1), . . . , ρ(Vn)Wn(xn))�〉

×N
(
WV ∗

1
(x1), . . . ,WV ∗

n
(xn)

)
. (3.2.9)

We still have some freedom on the chronological products which can be used to impose
another condition. Let


uw = 
adv
uw − 
ret

uw (3.2.10)

be a causal splitting of the distribution with causal support 
uw. By definition the Feynman
propagator and the Feynman anti-propagator are:


F
uw ≡ 
adv

uw − 
−
uw = 
ret

uw + 
+
uw 
AF ≡ 
+

uw − 
adv
uw = −
ret

uw − 
−
uw. (3.2.11)

Then we have the following result [45].

Theorem 3.3. Suppose that the chronological products have been chosen such that they are
expressions of Wick type. Then they can be chosen such that one also has for all n ∈ N:

T
(
WU1(x1), . . . ,WUn

(xn), ϕw(y)
) =

∑
U ′

i ⊂Ui

〈
�, T

(
WCU ′

1
(x1), . . . , WCU ′

n
(xn)

)
�
〉

×N
(
WU ′

1
(x1), . . . ,WU ′

n
(xn), ϕw(y)

)
+

n∑
l=1

∑
u∈Ul


F
uw(xl − y)T

(
WU1(x1), . . . ,WUl−{u}, . . . ,WUn

(xn)
)
. (3.2.12)

Proof. It is also based on induction on the rank |U1| + · · · + |Un| (see also [5]). One can easily
see that the relation from the statement is trivial for r = 1. We suppose that it is true for
|U1| + · · · + |Un| = r − 1 and prove that it can also be fixed for |U1| + · · · |Un| = r . We use a
familiar technique, namely we consider for this case the commutator of both sides of (3.2.9)
with an arbitrary ϕw′(z) and, using the induction hypothesis, we get zero. So, the relation from
the statement for |U1| + · · · + |Un| = r can be affected by a constant ‘anomaly’:

c(x1, . . . , xn, y) ≡ 〈
�, T

(
WU1(x1), . . . ,WUn

(xn), ϕw(y)
)
�
〉 − n∑

l=1

∑
u∈Ul


F
uw(xl − y)

× 〈
�, T

(
WU1(x1), . . . ,WUl−{u}, . . . ,WUn

(xn)
)
�
〉
. (3.2.13)

Using the causal factorization property of the chronological products, the induction
hypothesis and property (3.2.2), one can prove that the support of the distribution
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c(x1, . . . , xn, y) is contained in the diagonal set x1 = · · · = xn = y. This means that
we have the generic form

c(x1, . . . , xn, y) = p(∂)δ(x1 − y) · · · δ(xn − y) (3.2.14)

with p(∂) being some polynomials in the partial derivatives. Moreover, this numerical
distribution has convenient covariance properties and a limitation on the degree of p comes
from the power counting limitations on the right-hand side of (3.2.13). In the end, it follows
that we can absorb the anomaly c(x1, . . . , xn, y) into the vacuum sector of the chronological
product T

(
WU1(x1), . . . ,WUn

(xn), ϕw(y)
)
, |U1|+ · · ·+|Un| = r without affecting the Epstein–

Glaser induction construction. �

In [5, 13] the relation appearing in this proposition is called the normalization
condition (N4).

As in the preceding section, one can define the chronological products acting in the Hilbert
space F by stripping the Grassmann variables.

4. General gauge theories

4.1. The supersymmetric BRST operator

In the general setting of subsection 2.1 we define a BRST operator dQ on the set of polynomials
in the fields φA

± through the following properties:

• It gives zero on the constant operator:

dQ1 = 0. (4.1.1)

• It is linear over C.
• It acts on the basic fields as follows:

dQφA
±(x) = −i

∑
|α|�s

∑
B

(qα)AB∂αφB
±(x) (4.1.2)

where qα are real N × N matrices constrained by

(qα)AB = 0 iff zB − zA 
= 1 (4.1.3)

here s ∈ N
∗ is called the rank of the BRST operator. The usual case is s = 1.

• It is a (graded) derivative operator in the sense that for all ε1, . . . , εn = ±, we have

dQ

[
φA1

ε1
(x1) · · · φAn

εn
(xn)

] =
n∑

l=1

∏
i<l

(−1)zAi φA1
ε1

(x1) · · · dQφAl

εl
(xl) · · · φAn

εn
(xn). (4.1.4)

• It commutes with the derivative operators:

[dQ, ∂β ] = 0. (4.1.5)

It is clear that the usual BRST operator appearing in Yang–Mills models is a particular case
of this general framework. One can naturally extend the operator dQ to the set of polynomials
in the fields ϕA

±; then the following properties are true:

• It gives zero on the constant operator:

dQ1 = 0. (4.1.6)

• It is linear over G.
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• It acts on the basic fields as follows:

dQϕA
±(x) = −i

∑
|α|�s

∑
B

(Qα)AB∂αϕB
±(x) (4.1.7)

where

(Qα)AB = gAg−1
B (qα)AB (4.1.8)

and deg
(
(Qα)AB

) = −1.
• It is a derivative operator:

dQ

[
ϕA1

ε1
(x1) · · · ϕAn

εn
(xn)

] = −i
n∑

l=1

(Qα)Al
BϕA1

ε1
(x1) · · · ∂αϕB

εl
(xl) · · · ϕAn

εn
(xn). (4.1.9)

• It commutes with the derivative operators:

[dQ, ∂β ] = 0. (4.1.10)

We compute the action of the operator on the supersymmetric fields. We have the
following proposition.

Proposition 4.1. The following formula is true:

dQϕu(x) = ζ−1ϕζQ·u(x) (4.1.11)

where ζ ∈ G1 is a fixed invertible element and we have defined

(Q · u)αA ≡ −
∑

β+γ=α

∑
B

(Qβ)BAu
γ

B. (4.1.12)

The proof is elementary. We have introduced the factor ζ because (Q · u)αA ∈ G−1 and
in this way ζQ · u has real values, and it can be considered as an element of the classical
manifold J r(RN,M).

If we apply the operator dQ to the last commutation relation (2.1.14), we obtain


ζQ·u,w = −
u,ζQ·w. (4.1.13)

Another consequence of the preceding proposition is the following corollary.

Corollary 4.2. The following formulae are true:

dQ

[
ϕε1

u1
(x1) · · · ϕεn

un
(xn)

] = iζ−1
n∑

l=1

ϕε1
u1

(x1) · · · ϕεl

ζQ·ul
(xl) · · · ϕεn

un
(xn) (4.1.14)

dQN
(
ϕε1

u1
(x1) · · · ϕεn

un
(xn)

) = iζ−1
n∑

l=1

N
(
ϕε1

u1
(x1) · · · ϕεl

ζQ·ul
(xl) · · · ϕεn

un
(xn)

)
(4.1.15)

dQWu1,...,un
(x) = iζ−1

n∑
l=1

Wu1,...,ζQ·ul ,...,un
(x). (4.1.16)

dQWA1,...,An

α1,...,αn
(x) = −i

n∑
l=1

∑
B,β

(Qβ)Al
BW

A1,...,Al−1,B,Al+1,...,An

α1,...,αl−1,β+αl ,αl+1,...,αn
(x) (4.1.17)

dQWA1,...,An

α1,...,αn
(x) = −i

n∑
l=1

∑
B,β

∏
i<l

(−1)zAi (qβ)Al
BW

A1,...,Al−1,B,Al+1,...,An

α1,...,αl−1,β+αl ,αl+1,...,αn
(x). (4.1.18)
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Proof. The first relation follows by direct computations from the derivative property of the
operator dQ, the second relation follows from the first if we use proposition 2.4 and the third
one follows if we ‘collapse’ the variables into the preceding one. The last two relations are
direct consequences of the definitions. �

We will have to extend the action of the BRST operator to the dual space of classical
fields (J r(RN,M))∗. For this we need the following result.

Proposition 4.3.

(i) If u ∈ M then ζQ · u ∈ M.
(ii) If v ∈ (J r(RN,M))∗ let us define Q · v ∈ (J r−s(RN,M))∗ according to

(Q · v)Aα ≡
∑
B,β

(Qβ)ABvB
α+β. (4.1.19)

Suppose now that v ∈ M0; then ζQ · v ∈ M0.
(iii) The following relation is valid:

[dQ, ρ(v)] = iζ−1ρ(ζQ · v). (4.1.20)

Proof. The proofs of the first two assertions are based on elementary computations. For
the last relation, it is sufficient to prove it to be true when applied to a Wick monomial
WU(x). �

4.2. Gauge invariant models

We generalize the framework outlined in the introduction, i.e. we suppose that we have a set
of Wick polynomials Ai (x), i = 1, . . . , p, which we organize as a Wick multiplet (a column
matrix) A and some p × p matrices cα such that the following relation is true:

dQA(x) = i
∑

α

cα∂αA(x). (4.2.1)

Then we say that we have a general gauge theory. If Ai(x) are the supersymmetric Wick
polynomials associated with Ai (x), i = 1, . . . , p, then a similar relation is verified by them:

dQA(x) = i
∑

α

cα∂αA(x). (4.2.2)

We say that a gauge model A(x) is of degree r if cα = 0,∀|α| 
= r . The case considered
in the introduction corresponds to r = 1.

We have the following consequence.

Proposition 4.4. Let A(x) be a general gauge theory. Then we also have

dQ[ρ(v1) · · · ρ(vk)A(x)] = i
∑

α

cα∂α[ρ(v1) · · · ρ(vk)A(x)]

+
k∑

l=1

[
ζ−1ρ(v1) · · · ρ(ζQ · vl) · · · ρ(vk)

+
∑

α

cαρ(v1) · · · ρ(∂αv) · · · ρ(vk)

]
A(x). (4.2.3)
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The proof is elementary using the commutation relations (2.3.14) and (4.1.20). One can
write the preceding relation more compactly introducing some notation. We denote:

Q · ρ(v1, . . . , vk) ≡ ζ−1
k∑

l=1

ρ(v1, . . . , ζQ · vl, . . . , vk) (4.2.4)

and

δ · ρ(v1, . . . , vk) ≡
k∑

l=1

∑
α

cαρ(v1, . . . , ∂αvl, . . . , vk). (4.2.5)

We also define

D ≡
∑

α

cα∂α. (4.2.6)

Then the relation from the preceding proposition can be rewritten as follows:

dQρ(V )A(x) = i(D + Q + δ)ρ(V )A(x) (4.2.7)

where V = {v1, . . . , vk}.
For further use, we give the following commutation relations:

Q · ρ(v, V ) − ρ(v)Q · ρ(V ) = ζ−1ρ(ζQ · v)ρ(V ) (4.2.8)

and

δ · ρ(v, V ) − ρ(v)δ · ρ(V ) =
∑

α

cαρ(∂αv)ρ(V ). (4.2.9)

We define a perturbation theory of the general gauge theory A(x). Let us consider a set
of chronological products verifying Bogoliubov axioms (and other normalization conditions
imposed in the analysis from the preceding section); we say that they verify gauge invariance
of rank k if the following identity is true for any |V | = k:∑
V1,...,Vn∈part(V )

{
dQT (ρ(V1)A(x1), . . . , ρ(Vn)A(xn))

− i
n∑

l=1

[Dl · T (ρ(V1)A(x1), . . . , ρ(Vn)A(xn))

+ T (ρ(V1)A(x1), . . . , (Q + δ) · ρ(Vl)A(xl), . . . , ρ(Vn)A(xn))]

}
= 0

(4.2.10)

here

Dl ≡
∑

α

(1 ⊗ · · · ⊗ cα ⊗ · · · 1)∂l
α. (4.2.11)

It is not very difficult to see that for a Yang–Mills model, the preceding relation for k = 0
goes into the usual gauge invariance condition for the chronological product of the Wick
monomials Ai(x) so we call this case simply gauge invariance. The cases k > 0 give the
behaviour with respect to the BRST operator of the chronological products of derivatives of
the Wick monomials Ai(x). In principle, if one has some non-zero expression on the right-
hand side of the preceding relations, one says that there is an anomaly of gauge invariance.
One should note, however, that by redefining the chronological products one modifies the
expression of the anomaly also by terms which are called co-boundaries in the spirit of
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cohomology theory. One speaks of an anomalous gauge theory only if the anomaly is not
trivial, i.e. it is not a co-boundary; if it is a co-boundary then it can be eliminated by a
redefinition of the chronological product.

There is a connection between gauge invariance of rank k and rank invariance of rank
k + 1 described in the following theorem which is the analogue of the result from appendix B
of [13].

Theorem 4.5. Suppose that A(x) verifies the gauge invariance condition of rank k + 1. Then
the anomalies of the gauge invariance condition of rank k can only appear in the vacuum
sector.

Proof. As in [13] we consider the gauge invariance condition of rank k and commute
both sides with an arbitrary ϕw(y). Using the induction hypothesis, the Wick theorem and
some commutation relations derived before, we get (after some tedious but straightforward
computations) the same expressions in both sides. This means that the anomaly is proportional
to 1 so it can show up only in the vacuum sector. �

We say that a BRST transformation is normal if it can be expressed as the (graded)
commutator with some operator Q verifying Q� = 0,Q∗� = 0. The operator Q is called
supercharge (or gauge charge). In the usual gauge models the BRST transformation is always
normal. We now have the following corollary.

Corollary 4.6. If dQ is a normal BRST transformation, then the gauge invariance condition
is equivalent to the following set of identities:

∑
V1,...,Vn∈ part(V )

{
n∑

l=1

Dl〈�, T (ρ(V1)A(x1), . . . , ρ(Vn)A(xn))�〉

+ 〈�, T (ρ(V1)A(x1), . . . , (Q + δ) · ρ(Vl)A(xl), . . . , ρ(Vn)A(xn))�〉
}

= 0

(4.2.12)

for any set of derivatives V .

Proof. First we note the fact that gauge invariance of rank k is always true for k large enough.
Indeed, the anomaly of the gauge invariance of rank 0 is a quasi-local operator where there is
a limitation on the degree of the polynomial in the partial derivatives—see relation (2.2.24);
details of the argument can be found, for instance, in [28]. If one considers instead of the Wick
polynomials Ai(x) their derivatives ρ(Vi)A

i(x), one can easily see that every derivative lowers
the restriction on the degree of the anomaly with at least one unit. This proves the preceding
assertion. Now the Ward identities are the vacuum averages of the gauge invariance relations
of arbitrary rank. We apply the preceding theorem iteratively and obtain the conclusion. �

It is not so simple to eliminate the anomalies from the vacuum sector. In the case of
quantum electrodynamics [13] this can be done using charge conjugation invariance. In the
case of a Yang–Mills model, we have some restrictions coming from ghost number counting
and PCT invariance, but they do not eliminate all anomalies as we have already proved in
another paper [30].
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5. The gauge invariance of the Yang–Mills model

In this section we investigate the Ward identities in the lowest orders of the perturbation theory.
We will find that they are valid; in fact for order n � 3 this analysis is equivalent to the analysis
from [26] and [27].

5.1. Yang–Mills fields

In [25–27] we have considered the following scheme for the standard model (SM): we
construct the auxiliary Hilbert space Hgh,r

YM from the vacuum � by applying the free fields
Aaµ, ua, ũa,�a, a = 1, . . . , r and ψA,A = 1, . . . , N . The fields ψA are in general Dirac
fields describing the matter and have the masses MA,A = 1, . . . , N . We give the spin
structure and the statistics for the other fields: first we postulate that Aaµ (respectively
ua, ũa,�a, a = 1, . . . , r) has vector (respectively scalar) transformation properties with
respect to the Poincaré group. In other words, every vector field has three scalar partners.
Also Aaµ,�a are boson and ua, ũa, a = 1, . . . , r , are fermion fields.

Moreover, if for some index a the vector field A
µ
a has non-zero mass ma then we suppose

that all the other scalar partner fields ua, ũa,�a have the same mass ma .
If for some index a the vector field A

µ
a has zero mass, then the scalar partner fields ua, ũa

also have zero mass but the corresponding scalar field �a can have an arbitrary mass m∗
a or

might be absent.
Finally, we admit that for some indices a all the fields A

µ
a , ua, ũa might be absent and the

corresponding scalar field �a can have an arbitrary mass m∗
a .

The canonical (anti-)commutation relations are

[Aaµ(x),Abν(y)] = −δabgµνDma
(x − y) × 1 {ua(x), ũb(y)} = δabDma

(x − y) × 1

[�a(x),�b(y)] = δabDm∗
a
(x − y) × 1 {ψA(x), ψB(y)} = δABSMA

(x − y)

(5.1.1)

all other (anti-)commutators are null.
In the Hilbert space Hgh,r

YM we suppose given a sesquilinear form 〈·, ·〉 such that

Aaµ(x)† = Aaµ(x) ua(x)† = ua(x) ũa(x)† = −ũa(x) �a(x)† = �a(x).

(5.1.2)

The ghost degree is 1 (resp. −1) for the fields ua (resp. ũa), a = 1, . . . , r and 0 for the
other fields.

One can define the BRST supercharge Q by

{Q,ua} = 0 {Q, ũa} = −i
(
∂µA

µ
a + ma�a

)[
Q,A

µ
a

] = i∂µua [Q,�a] = imaua ∀a = 1, . . . , r
(5.1.3)

and

Q� = 0. (5.1.4)

Then one can justify that the physical Hilbert space of the Yang–Mills system is a factor
space

Hr
YM ≡ H ≡ Ker(Q)/Ran(Q). (5.1.5)

The sesquilinear form 〈·, ·〉 induces a bona fide scalar product on the Hilbert factor space.
Let us consider the set of Wick monomials W constructed from the free fields A

µ
a , ua, ũa

and �a for all indices a = 1, . . . , r; we define the BRST operator dQ : W → W as the
(graded) commutator with the supercharge operator Q. Then one can prove easily that

d2
Q = 0. (5.1.6)
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Let us consider the first order Lagrangian (the double dots mean Wick ordering):

T (x) ≡ fabc

[
1
2 : Aaµ(x)Abν(x)Fµν

a (x) : − : Aµ
a (x)ub(x)∂µũc(x) :

]
+ f ′

abc

[
:�a(x)∂µ�b(x)Aµ

c (x) : −mb : �a(x)Abµ(x)Aµ
c (x) :

−mb : �a(x)ũb(x)uc(x):
]

+ f ′′
abc : �a(x)�b(x)�c(x) :

+ jµ
a (x)Aaµ(x) + ja(x)�a(x) (5.1.7)

where

Fµν
a (x) ≡ ∂µAν

a(x) − ∂νAµ
a (x) (5.1.8)

is the Yang–Mills field tensor and the so-called currents are

jµ
a (x) =: ψA(x)(ta)ABγ µψB(x) : + : ψA(x)(t ′a)ABγ µγ5ψB(x) : (5.1.9)

and

ja(x) =: ψA(x)(sa)ABψB(x) : + : ψA(x)(s ′
a)ABγ5ψB(x) : (5.1.10)

where a number of restrictions must be imposed on the various constants (see [25–27]).
Moreover, if we define

T µ(x) = fabc

[
: ua(x)Abν(x)F νµ

c (x) : − 1
2 : ua(x)ub(x)∂µ(x)ũc(x) :

]
+ f ′

abc

[
ma : Aµ

a (x)�b(x)uc(x) : + : �a(x)∂µ�b(x)uc(x):
]

+ ua(x)jµ
a (x)

(5.1.11)

and

T µν(x) = 1
2fabc : ua(x)ub(x)F νµ

c (x) : (5.1.12)

then we have relation (1.0.1) from the introduction for p = 2.
All these Wick polynomials are SL(2, C)-covariant, causally commuting and are

Hermitian. Moreover, we have the following ghost content:

gh(T (x)) = 0 gh(T µ(x)) = 1 gh(T µν(x)) = 2. (5.1.13)

We will construct a perturbation theory verifying Bogoliubov axioms using this set of
free fields and imposing the usual axioms of causality, unitarity and relativistic invariance on
the chronological products T (Ai1(x1), . . . , A

in(xn)) (where the Wick polynomials Ai(x) must
be T (x), T µ(x) or T µν(x)) such that we have relation (1.0.3) from the introduction which
amounts to the factorization property of the chronological products to the physical Hilbert
space in the formal adiabatic limit. This generalizes the gauge invariance condition from
[1, 21]:

dQT (T (x1), . . . , T (xn)) = i
n∑

l=1

∂

∂x
µ

l

T
(
T (x1), . . . , T

µ

l (xl), . . . , T (xn)
)
. (5.1.14)

From now on we work with the usual chronological products. The various signs from
some of the relations below are obtained by conveniently eliminating the Grassmann variables.

Let us now consider some elements v1, . . . , vk ∈ M0 of fixed ghost number and let us
define

gl =
l−1∑
i=1

gh(vi) g′
l =

k∑
i=l

gh(vi). (5.1.15)

Then after some computation, one obtains from (4.2.3):

dQ[ρ(v1) · · · ρ(vk)T (x)] = i∂µ[ρ(v1, . . . , ρ(vk)T
µ(x)] + i

k∑
l=1

[(−1)gl

× ρ(v1) . . . , ρ(q · vl)ρ(vk)T (x) + ρ(v1) . . . , ρ(∂µ · vl)ρ(vk)T
µ(x)] (5.1.16)
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dQ[ρ(v1) · · · ρ(vk)T
µ(x)] = i∂ν[ρ(v1), . . . , ρ(vk)T

νµ(x)] + i
k∑

l=1

[(−1)g
′
l

× ρ(v1) . . . , ρ(q · vl)ρ(vk)T
µ(x) + ρ(v1) . . . , ρ(∂ν · vl)ρ(vk)T

νµ(x)]

(5.1.17)

dQ[ρ(v1) · · · ρ(vk)T
µν(x)] = i

k∑
l=1

(−1)gl ρ(v1) . . . , ρ(q · vl)ρ(vk)T
µµ(x). (5.1.18)

Here the expressions ∂µ · v are defined according to (2.3.20) and

q · ∂

∂Aaµ

= −1

4
m2

a

∂

∂ũa;µ
q · ∂

∂ua

= 1

4
m2

agµν

∂

∂Aaµ;ν
q · ∂

∂ũa

= 0

q · ∂

∂�a

= ma

∂

∂ũa

q · ∂

∂Aaµ;ν
= gµρ ∂

∂ũa

q · ∂

∂ua;µ
= − ∂

∂Aaµ

q · ∂

∂ũa;µ
= 0 q · ∂

∂�a;µ
= ma

∂

∂ũa;µ
(5.1.19)

where the derivatives with respect to the fields are defined according to the general formulae
(2.3.18).

Using these relations one can now easily write explicitly all Ward identities. We will not
list them here.

5.2. Lower order Ward identities

We consider identities (4.2.12) for 2 � n � 5. It follows from the preceding section that we
have something non-trivial only if

|V | � 5 gh(V ) =
n∑

l=1

gh(Ail ) − 1. (5.2.1)

Also, in the sum over the partitions of V it is sufficient to consider only those terms for
which all subsets V1, . . . , Vn are non-void.

The list of these Ward identities is too long to give in detail. We will only mention the
choices for the set V and insist on those identities which produce anomalies. Afterwards
we will specify the finite renormalizations which do eliminate the anomalies. In all these
computations we heavily rely on the various relations verified by the constants appearing in
the first order Lagrangian T (x); all these constraints can be found in [26] and [27].

(i) n = 2
In the second order perturbation theory we have three possibilities
(i1) Ai1(x) = Ai2(x) = T (x).

In this case we must have gh(V ) = 1, so we have the following cases:

V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂ũc

,
∂

∂Adρ

}
V =

{
∂

∂ua

,
∂

∂ub

,
∂

∂ũc

,
∂

∂�d

}
V =

{
∂

∂ua

,
∂

∂Abν

,
∂

∂Acρ

,
∂

∂Adσ

}
V =

{
∂

∂ua

,
∂

∂Abν

,
∂

∂Acρ

,
∂

∂�d

}
V =

{
∂

∂ua

,
∂

∂Abν

,
∂

∂�c

,
∂

∂�d

}
V =

{
∂

∂ua

,
∂

∂�b

,
∂

∂�c

,
∂

∂�d

}
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V =
{

∂

∂ua

,
∂

∂�b

,
∂

∂�c

,
∂

∂�d

,
∂

∂�e

}
V =

{
∂

∂ua

,
∂

∂Abρ

}
V =

{
∂

∂ua

,
∂

∂�b

}
(5.2.2)

and the cases obtained from the first six by appending derivatives to one of the fields. In all,
there are 24 such relations. We give below only the anomalous Ward identities:

(1) V =
{

∂

∂ua

,
∂

∂Abν

,
∂

∂Acρ

,
∂

∂Adσ ;λ

}
.

Let us give the Ward identity in detail in the case:

∂

∂x
µ

1

〈
�, T

(
∂2

∂ua∂Abν

T µ(x1),
∂2

∂Acρ∂Adσ ;λ
T (x2)

)
�

〉
+

〈
�, T

(
∂2

∂ua∂Adσ

T λ(x1),
∂2

∂Abν∂Acρ

T (x2)

)
�

〉
+ (bν ↔ cρ) + (x1 ↔ x2) + · · · = 0 (5.2.3)

where by · · · we mean terms which do not produce anomalies.
We will illustrate the procedure of obtaining the anomaly in this case. The first

chronological product comes from the causal commutator[
∂2

∂ua∂Abν

T µ(x1),
∂2

∂Acρ∂Adσ ;λ
T (x2)

]
= fabefcde(g

ρσ gνλ − gρλgνσ )∂µDme
(x1 − x2)

(5.2.4)

and it produces the anomaly

fabefcde(g
ρσ gνλ − gρλgνσ )δ(x1 − x2). (5.2.5)

The total anomaly produced by the preceding Ward identity is

A
νρσλ

1;abcd = 2ifadefcbe(g
ρσ gνλ − gρλgνσ )δ(x1 − x2). (5.2.6)

(2) V =
{

∂

∂ua

,
∂

∂Abν

,
∂

∂Acρ

,
∂

∂Adσ

}
with the anomaly

A
νρσ

2;abcd = ifabefcde(g
νσ ∂ρ − gνρ∂σ )δ(x1 − x2) + (bν ↔ cρ) + (bν ↔ dσ) (5.2.7)

(3) V =
{

∂

∂ua;ν
,

∂

∂Abρ

,
∂

∂Acσ

,
∂

∂Adλ

}
.

In this case we get an algebraic Ward identity:〈
�, T

(
∂2

∂Aaν∂Abρ

T (x1),
∂2

∂Acσ ∂Adλρ

T (x2)

)
�

〉
−
〈
�, T

(
∂2

∂ua∂Abρ

T ν(x1),
∂2

∂Acσ ∂Adλρ

T (x2)

)
�

〉
+ (bρ ↔ cσ ) + (bρ ↔ dλ) + (x1 ↔ x2) + · · · = 0. (5.2.8)

(4) V =
{

∂

∂ua

,
∂

∂Abρ

,
∂

∂�c

,
∂

∂�d;σ

}
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with the anomaly

A
ρσ

3;abcd = −2igρσ f ′
deaf

′
cebδ(x1 − x2). (5.2.9)

(5) V =
{

∂

∂ua

,
∂

∂Abρ

,
∂

∂�c

,
∂

∂�d

}
with the anomaly

A
ρ

4;abcd = −2i(f ′
deaf

′
ceb + f ′

debf
′
cea)∂

ρδ(x1 − x2). (5.2.10)

(6) V =
{

∂

∂ua;ρ
,

∂

∂Abσ

,
∂

∂�c

,
∂

∂�d

}
.

In this case we get an algebraic Ward identity.

(7) V =
{

∂

∂ua

,
∂

∂�b

,
∂

∂�c

,
∂

∂�d

}
with the anomaly

A5;abcd = −12iSbcd(f
′
beaf

′′
cde)δ(x1 − x2) (5.2.11)

(i2) Ai1(x) = T (x),Ai2(x) = T ν(x)

In this case we must have gh(V ) = 2, so we have the following possibilities:

V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂uc

,
∂

∂ũd

}
V =

{
∂

∂ua

,
∂

∂ub

,
∂

∂Acρ

,
∂

∂Adσ

}
V =

{
∂

∂ua

,
∂

∂ub

,
∂

∂Acρ

,
∂

∂�d

}
V =

{
∂

∂ua

,
∂

∂ub

,
∂

∂�c

,
∂

∂�d

}
(5.2.12)

V =
{

∂

∂ua

,
∂

∂ub

}
and the cases obtained from the first four by appending a derivative to one of the fields. In all,
there are 14 such relations. We give below only the anomalous Ward identities:

(8) V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂Acρ

,
∂

∂Adσ ;λ

}
with the anomaly

A
νρσλ

6;abcd = −ifabefcde(g
ρσ gνλ − gρλgνσ )δ(x1 − x2) (5.2.13)

(9) V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂Acρ

,
∂

∂Adσ

}
with the anomaly

A
νρσ

7;abcd = 2ifabefcde(g
νσ ∂ρ − gνρ∂σ )δ(x1 − x2) + (bν ↔ cρ) + (bν ↔ dσ) (5.2.14)

(10) V =
{

∂

∂ua;ν
,

∂

∂ub

,
∂

∂Acσ

,
∂

∂Adλ

}
.

In this case we get an algebraic Ward identity.

(11) V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂�c

,
∂

∂Adρ

}
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with the anomaly

A
ρσ

8;abcd = −igρσ [ma(f
′
eadf

′
ceb + f ′

cedf
′
eab) − (a ↔ b)]δ(x1 − x2) (5.2.15)

(12) V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂�c

,
∂

∂�d;ρ

}
with the anomaly

A
ρ

9;abcd = −igρσfabef
′
cdeδ(x1 − x2) (5.2.16)

(13) V =
{

∂

∂ua;ρ
,

∂

∂ub

,
∂

∂�c

,
∂

∂�d

}
.

In this case we get an algebraic Ward identity.
(i3) Ai1(x) = T (x),Ai2(x) = T νρ(x).

In this case we must have gh(V ) = 3, so we have the following possibilities:

V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂uc

,
∂

∂Adρ

}
V =

{
∂

∂ua

,
∂

∂ub

,
∂

∂uc

,
∂

∂�d

}
(5.2.17)

and the cases obtained by appending derivatives to one of the fields. There are six such
relations and the corresponding Ward identities do not give anomalies.
(i4) Ai1(x) = T (x),Ai2(x) = T νρ(x).

In this case we also have gh(V ) = 3, so we have the same possibilities as in case (i3):

V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂uc

,
∂

∂Adρ

}
V =

{
∂

∂ua

,
∂

∂ub

,
∂

∂uc

,
∂

∂�d

}
(5.2.18)

and the cases obtained by appending derivatives to one of the fields. There are six such
relations. The anomalous Ward identities correspond to the following choices:

(14) V =
{

∂

∂ua;σ
,

∂

∂ub

,
∂

∂uc

,
∂

∂Adσ

}
.

In this case we get an algebraic Ward identity

(15) V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂uc

,
∂

∂�d

}
with the anomaly

A
ρσ

10;abcd = −igρσAabc(fabcf
′
dec)meδ(x1 − x2) (5.2.19)

(i5) Ai1(x) = T ν(x), Ai2(x) = T ρσ (x).

In this case we take gh(V ) = 4, so we have only

V =
{

∂

∂ua

,
∂

∂ub

,
∂

∂uc

,
∂

∂ud

}
(5.2.20)

and the case obtained by appending derivatives to one of the fields. There are two such
relations and the corresponding Ward identities do not produce anomalies.

All anomalies can be removed if we perform the following finite renormalization of the
chronological products:

T

(
∂2

∂ua∂Adσ

T λ(x1),
∂2

∂Abν∂Acρ

T (x2)

)
→ · · · + fadefbce(g

ρσ gνλ − gρλgνσ )δ(x1 − x2)

T

(
∂2

∂Aaν∂Abρ

T (x1),
∂2

∂Acσ ∂Adλ

T (x2)

)
→ · · · − fabefcde(g

ρσ gνλ − gρλgνσ )δ(x1 − x2)
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T

(
∂2

∂ua∂�d

T σ (x1),
∂2

∂Abρ∂�c

T (x2)

)
→ · · · + f ′

cebf
′
dea(g

ρσ gνλ − gρλgνσ )δ(x1 − x2)

T

(
∂2

∂Aaρ∂�c

T (x1),
∂2

∂Abσ ∂�d

T (x2)

)
→ · · · − f ′

cebf
′
deag

ρσ δ(x1 − x2)

T

(
∂2

∂�a∂�b

T (x1),
∂2

∂�c∂�d

T (x2)

)
→ · · · +

1

4
Sbcd(f

′
beaf

′′
cde)δ(x1 − x2)

T

(
∂2

∂ua∂Adσ

T λ(x1),
∂2

∂ub∂Acρ

T (x2)

)
→ · · · − facefbde(g

ρσ gνλ − gρλgνσ )δ(x1 − x2)

T

(
∂2

∂Acρ∂Adσ

T (x1),
∂2

∂ua∂ub

T µν(x2)

)
→ · · · + fabefcde(g

µσ gνρ − gµρgνσ )δ(x1 − x2)

T

(
∂2

∂�a∂ub

T λ(x1),
∂2

∂�c∂Adρ

T ν(x2)

)
→ · · · − f ′

cedf
′
eabg

νρδ(x1 − x2)

T

(
∂2

∂ua∂�d

T ρ(x1),
∂2

∂ub∂�c

T ν(x2)

)
→ · · · + f ′

ceaf
′
debg

ρσ δ(x1 − x2).

(5.2.21)

All these renormalizations are made in the vacuum sector, so there is no need to take
the vacuum average. Let us note that all these finite renormalizations are consistent with the
symmetry properties of the chronological products. If we use formula (3.2.2) we can obtain
the finite renormalizations for the original chronological products:

T (T (x1), T (x2)) → · · · + N(x1)δ(x1 − x2)

T (T µ(x1), T (x2)) → · · · + Nµ(x1)δ(x1 − x2)
(5.2.22)

T (T µ(x1), T
ν(x2)) → · · · + Nµν(x1)δ(x1 − x2)

T (T (x1), T
µν(x2)) → · · · + Nµν(x1)δ(x1 − x2)

where

N ≡ 1

4
fabefcde : AaµAµ

c AbρA
ρ

d : +
1

2
f ′

cebfdea : AaµA
µ

b �c�d :

+
1

2ma

f ′
beaf

′′
cde : �a�b�c�d :

(5.2.23)
Nµ ≡ −fadefbce : uaA

µ

b AcρA
ρ

d : −f ′
ebbfeda : uaA

µ

b �c�d :

Nµν ≡ fabefcde : uaubAcµAdν :

(ii) n = 3.
The situation in the third order of the perturbation theory can be analysed as in [27]. One

can see that only in two situations can anomalies appear.
(ii1) When the chronological products involve at least one fermionic loop. The relevant
choices for the set V are

V =
{

∂

∂ua

,
∂

∂Abν

,
∂

∂Acρ

}
V =

{
∂

∂ua

,
∂

∂Abν

,
∂

∂�c

}
V =

{
∂

∂ua

,
∂

∂�b

,
∂

∂�c

}
(5.2.24)

and other relations with one of the fields differentiated. There are 10 relations of this type.
The Ward identities which can produce anomalies correspond only to the choices without
derivatives. They are respectively as follows:
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for Ai1(x) = Ai2(x) = Ai3(x) = T (x)

∂

∂x
µ

1

〈
�, T

(
jµ
a (x1), j

ν
b (x2), j

ρ
c (x3)

)
�
〉 − ma

〈
�, T

(
ja(x1), j

ν
b (x2), j

ρ
c (x3)

)
�
〉

+ (bν ↔ cρ) + (x1 ↔ x2) + (x1 ↔ x3) + · · · (5.2.25)

∂

∂x
µ

1

〈
�, T

(
jµ
a (x1), j

ν
b (x2), jc(x3)

)
�
〉 − ma

〈
�, T

(
ja(x1), j

ν
b (x2), jc(x3)

)
�
〉

+ (x1 ↔ x2) + (x1 ↔ x3) + · · · (5.2.26)

∂

∂x
µ

1

〈
�, T

(
jµ
a (x1), jb(x2), jc(x3)

)
�
〉 − ma

〈
�, T

(
ja(x1), jb(x2), jc(x3)

)
�
〉

+ (b ↔ c) + (x1 ↔ x2) + (x1 ↔ x3) + · · · (5.2.27)

for Ai1(x) = T ν(x), Ai2(x) = Ai3(x) = T (x)

∂

∂x
µ

1

〈
�, T

(
jν
a (x1), j

µ

b (x2), j
ρ
c (x3)

)
�
〉 − mb

〈
�, T

(
jν
a (x1), jb(x2), j

ρ
c (x3)

)
�
〉

− (a ↔ b) + (x2 ↔ x3) + · · · (5.2.28)

for Ai1(x) = T ν(x), Ai2(x)T ρ(x), Ai3(x) = T (x)

Aabc

∂

∂x
µ

1

〈
�, T

(
jν
a (x1), j

ρ

b (x2), j
µ
c (x3)

)
�
〉 − mc

〈
�, T

(
jν
a (x1), j

ρ

b (x2), jc(x3)
)
�
〉

+ (x1 ↔ x2) + (x2 ↔ x3) + · · · . (5.2.29)

One can show as in [27] that these Ward identities are not anomalous if the axial vertex
anomaly vanishes. Indeed, one can show that the preceding Ward identities can be fulfilled if
equations (5.1.49)–(5.1.60) from [27] can be causally split; this in turns happens iff the axial
anomaly vanishes.

(ii2) We also have some Ward identities where anomalies can appear because of the
finite renormalizations (5.2.22). One can easily see that these cases correspond to the choice
Ai1(x) = Ai2(x) = Ai3(x) = T (x) and the following assignments for the derivatives V :

V =
{

∂

∂ua

,
∂

∂Abρ

,
∂

∂Acσ

,
∂

∂Adλ

,
∂

∂Af ν

}
V =

{
∂

∂ua

,
∂

∂Abσ

,
∂

∂Af λ

,
∂

∂�c

,
∂

∂�d

}
(5.2.30)

V =
{

∂

∂ua

,
∂

∂�b

,
∂

∂�c

,
∂

∂�d

,
∂

∂�e

}
.

The first choice gives the Ward identity

∂

∂x
µ

1

〈
�, T

(
∂2

∂ua∂Af ν

T µ(x1),
∂

∂Abρ

T (x2),
∂2

∂Acσ ∂Adλ

T (x3)

)
�

〉
+ perm(bν, cσ, dλ, f ν) + (x1,↔ x2) + (x1,↔ x3) + · · · = 0. (5.2.31)

The chronological product involves the causal splitting of the following commutator[
∂2

∂ua∂Af ν

T µ(x1), T

(
∂

∂Abρ

T (x2),
∂2

∂Acσ ∂Adλ

T (x3)

)]
= fafgfgbdfcde(g

ρλgνσ − gρσ gνλ)∂µDmg
(x1 − x2)δ(x2 − x3) + · · · (5.2.32)
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which produces the anomaly

A
ρσλν

abcde = 2fafgfgbdfcde(g
ρλgνσ − gρσ gνλ)∂µDmg

(x1 − x2) + perm(bν, cσ, dλ, f ν) = 0.

(5.2.33)

The other two cases can be treated similarly and do not produce anomalies. Let us
note that no finite renormalizations of the third order chronological products are necessary to
implement gauge invariance.

(iii) n = 4, 5
In these cases, one can argue as in [27] that only when the chronological products involve

at least one fermionic loop can one have anomalies. The relevant choices for the derivative
set V are similar to the case (ii1) studied above. One obtains that the corresponding Ward
identities might be broken by the box and the pentagon anomalies [39].
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